If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30u^2+21u-6=0
a = 30; b = 21; c = -6;
Δ = b2-4ac
Δ = 212-4·30·(-6)
Δ = 1161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1161}=\sqrt{9*129}=\sqrt{9}*\sqrt{129}=3\sqrt{129}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{129}}{2*30}=\frac{-21-3\sqrt{129}}{60} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{129}}{2*30}=\frac{-21+3\sqrt{129}}{60} $
| 32-p=7p | | 80=-x^2-x+19 | | 80=-x^2-x | | 7(3x+4)=35 | | 7(x=4)=105 | | 6x^2=-5-4x | | 8x²+12x+5=0 | | (x+1)(x-1)(x-2)(x^2+7x)(x-4)-2-2x=0 | | 14x+8x-16-6x-4x=56 | | 5x^2-33=4x | | 12+6x=11x-5 | | 23=6x+2 | | 10x+15x-9+5=-8x+5-9 | | 1560000÷x=1.6 | | t2-3t-18=0 | | 4-5d=2 | | 7(x=4)=104 | | 5u=6+3u | | (x)/(9)+(1)/(3)=(1)/(18) | | 9y=16+y | | 14w=8w+30 | | 8(a-7)=-3(a+3) | | 13w-5w=48 | | 4v=36-4v | | 5.32^x=12 | | (2x/3)+25=10 | | (3x+2x)/6=7 | | 9w+47=4(w+8) | | 5h+12=7 | | x=212-321.8 | | 6(b+7)=4 | | −2t−4=4t−4 |